Thesis
On spinc[sic]-invariants of four-manifolds
- Abstract:
-
The spinc-invariants for a compact smooth simply-connected oriented four-manifold, as defined by Pidstrigach and Tyurin, are studied in this thesis. Unlike the Donaldson polynomial invariants, they are defined by cutting down the moduli space M' of '1-instantons', which is the subspace of the moduli space M of anti-self-dual connections parametrizing coupled (spinc) Dirac operators with non-trivial kernel.
Our main goal is to study the relationship between these spinc-invariants and the Donaldson polynomial invariants. The 'jumping subset' M' defined a cohomology class P of M which is given by the generalised Porteous formula. When the index l of the coupled Dirac operator is 1, the two smooth invariants are the same by definition. When l = 0 (or when M is compact), the spinc-invariants are expressable as a Donaldson polynomial evaluating the 'Porteous class' P. Our main results concern the first two non-trivial cases l = -1 and -2, when the generalised Porteous formula can not be applied directly. Using cut-and-paste arguments to the moduli space M, we show that for the former case the spinc-invariants and the contracted Donaldson invariants differ by a correction term. It is the number of points in the immediate lower stratum of the Uhlenbeck compactification times a universal 'linking invariant' on S4, which is obtained by computing an example (the K3 surface). The case when l = -2 and dimM = 8 is a parametrized version of the l = -1 situation and the correction term, which involves the same 'linking invariant', is obtained from a suitable obstruction theory.
Actions
- Publication date:
- 1995
- Type of award:
- DPhil
- Level of award:
- Doctoral
- Awarding institution:
- University of Oxford
- Language:
-
English
- Subjects:
- UUID:
-
uuid:a9790f36-748f-4574-a97c-4f416ca67207
- Local pid:
-
td:603848195
- Source identifiers:
-
603848195
- Deposit date:
-
2013-10-21
Terms of use
- Copyright holder:
- Leung, Wai-Man Raymond
- Copyright date:
- 1995
- Notes:
- The digital copy of this thesis has been made available thanks to the generosity of Dr Leonard Polonsky
If you are the owner of this record, you can report an update to it here: Report update to this record