Thesis icon

Thesis

Free-space optical communications with retro-reflecting acquisition and turbulence compensation

Abstract:

Free-space optics (FSO), or wireless optical communications, has received extensive research due to its promise of practically limitless bandwidths. However, FSO has challenges yet to be met for a cost effective realisation. This D.Phil thesis explores a solution using a ferro-electric liquid crystal spatial light modulator (FLC SLM) and binary phase holograms to significantly reduce the hardware complexity of an FSO system with auto-alignment and turbulence compensation.

The theory of binary phase hologram is presented and extended to obtain a new algorithm that is suitable for a FLC SLM. The algorithm is able to be used in a demonstration system to broadcast data streams to multiple receivers, showing the capability of using FLC SLM to form any beam configuration. An FSO transmitter is then developed that uses retro-reflectors as markers for the receivers. The transmitter combines an imaging system with the FLC SLM as a reconfigurable beam steering system for acquiring the retro-reflector location. The FLC SLM is also used to reduce aberrations in the optics, resulting in a significant increase in the transmitted beam power density. The accuracy of the acquisition is measured to give a small steering error without the use of a closed loop controller.

An optical turbulence simulator, using the principals of binary phase hologram, is constructed to simulate optical beam propagation in turbulent conditions. The simulator accurately produces aberrations that have the same statistics with the theoretical prediction. Analysis of the phase distortion due to turbulence is performed and a wavefront sensorless turbulence compensation method based on the FLC SLM gives significant reduction in calculated bit error rates. New scintillation index derivation for multiple optical beams is described and then used to demonstrate further decrease in bit error rates.

Actions


Access Document


Files:

Authors


More by this author
Institution:
University of Oxford
Division:
MPLS
Department:
Engineering Science
Research group:
Communications Group
Oxford college:
Balliol College
Role:
Author

Contributors

Division:
MPLS
Department:
Engineering Science
Role:
Supervisor


Publication date:
2009
Type of award:
DPhil
Level of award:
Doctoral
Awarding institution:
Oxford University, UK


Language:
English
Keywords:
Subjects:
UUID:
uuid:9e19fc21-8767-4d6f-9e75-be4527f5e650
Local pid:
ora:9440
Deposit date:
2014-11-28

Terms of use



Views and Downloads






If you are the owner of this record, you can report an update to it here: Report update to this record

TO TOP