Thesis icon

Thesis

Structural and functional studies of cell surface receptors

Abstract:

Receptor proteins on the surfaces of cells equip them to communicate with each other and to sense and interact with their environment. One receptor family, the αβ T-cell receptors (TCRs), allow T lymphocytes to detect and respond to pathogens via interactions with antigen-presenting major histocompatibility complex (MHC) molecules on target cells. A degree of TCR cross-reactivity (e.g. through structural similarity between peptide-MHC (pMHC) complexes) is essential to account for all possible pathogens, but can also lead to the misinterpretation of self antigens as foreign, and thereby elicit an autoimmune response, resulting in diseases such as multiple sclerosis (MS). Structural studies of pMHC and TCR-pMHC complexes have been key to developing of an understanding of the molecular basis of TCR cross reactivity, and the first strand of this thesis describes attempts to express and purify a highly cross-reactive MS patient-derived TCR for structural characterisation. The formation, purification and crystallisation of a TCR-self pMHC complex including another autoreactive TCR is also described.

Another family of receptors, the fibronectin leucine-rich transmembrane proteins (FLRTs), has been implicated in roles in embryonic development including cell sorting and adhesion. In the second strand of this thesis, the nature of homotypic interactions between FLRTs, which may underlie adhesion between FLRT transfected cells, is investigated. Biophysical analyses demonstrate that these interactions may be mediated by the extracellular leucine-rich repeat (LRR) domain, and crystal structures of all three FLRT LRR domains suggest how interactions between them may underlie FLRT self-association at the cell surface. Residues which contribute to these interactions are conserved across different members of the FLRT family and different species. These findings confirm that FLRTs induce homotypic cell-cell adhesion, and suggest that this behaviour is mediated by self association at the cell surface via the LRR domain.

Actions


Access Document


Files:

Authors


More by this author
Institution:
University of Oxford
Division:
MSD
Department:
NDM
Sub department:
Structural Biology
Research group:
Professor E. Yvonne Jones - Division of Structural Biology
Oxford college:
Trinity College
Role:
Author

Contributors

Role:
Supervisor


More from this funder
Funding agency for:
Border, E
Grant:
RPSJ0


Publication date:
2012
Type of award:
DPhil
Level of award:
Doctoral
Awarding institution:
University of Oxford


Language:
English
Keywords:
Subjects:
UUID:
uuid:907793da-3ba1-4a57-8bdb-c185aa84c28c
Local pid:
ora:6992
Deposit date:
2013-07-12

Terms of use



Views and Downloads






If you are the owner of this record, you can report an update to it here: Report update to this record

TO TOP