Thesis
Raman spectroscopy of supported lipid bilayers and membrane proteins
- Abstract:
-
Off-resonance unenhanced total internal reflection (TIR) Raman Spectroscopy was explored to investigate supported single lipid bilayers with incorporated membrane peptides/proteins at water/solid interface.
A model membrane was formed on a planar supported lipid layer (pslb) by the fusion of the reconstituted small unilamellar vesicles (SUVs), and the intensity of bilayer was confirmed by a comparison of Raman spectral intensity in the C-H stretching modes with C16TAB. With prominent Raman sensitivity attained, we studied the 2-D phase transition of DMPC and DPPC pslbs and the temperature-dependent polarised spectra revealed a broad transition range of ca. 10 °C commencing at the calorimetric phase transition temperature.
We applied polarised TIR-Raman Spectroscopy to pslbs formed by DMPC SUVs reconstituted with a model membrane-spanning peptide gramicidin D. A preferential channel structure formed by dissolution of trifluoroethanol could be probed by polarised Raman Spectroscopy qualitatively showing an antiparallel β-sheet conformation (different from "standard" one) and our Raman spectra by correlation with NMR and CD data confirmed single-stranded π6.3 β-helical channel structure in the single bilayer. We also studied the membrane-penetrating peptide indolicidin in the presence of DMPC pslb over the chain melting temperature and a β-turn structure was dominantly observed concomitant with membrane perturbation.
Dynamic adsorption of DPPC to form pslb from a micellar solution of n-dodecyl-β- D-maltoside could be examined with high sensitivity of every 1-min acquisition. Finally we used polarised TIR-Raman scattering to porcine pancreatic phospholipase A2 hydrolytic activity on DPPC pslbs and revealed lipid-active conformation different from that of the enzyme alone.
Actions
- Publication date:
- 2005
- Type of award:
- DPhil
- Level of award:
- Doctoral
- Awarding institution:
- University of Oxford
- Language:
-
English
- Subjects:
- UUID:
-
uuid:76f4be6e-b7d3-46c5-a2a1-3dcc7a399410
- Local pid:
-
td:603828183
- Source identifiers:
-
603828183
- Deposit date:
-
2013-01-21
Terms of use
- Copyright holder:
- Lee, Chongsoo
- Copyright date:
- 2005
- Notes:
- The digital copy of this thesis has been made available thanks to the generosity of Dr Leonard Polonsky
If you are the owner of this record, you can report an update to it here: Report update to this record