Thesis icon

Thesis

Analogues of antibacterial natural products

Abstract:
This thesis is concerned with the synthesis and biological evaluation of structural mimics for the natural products 16-methyloxazolomycin and lemonomycin which display potent biological activity including antibacterial and antitumour activity. Chapter 1 explores methods and approaches to the discovery of new antibacterial drugs and the challenges faced in this respect. It also gives an overview of the properties of the natural products investigated in the following chapters and summarises previous synthetic approaches to these molecules published in the scientific literature. Chapter 2 describes the work carried out towards the synthesis of the diazabicyclo[3.2.1]octane unit of the tetrahydroisoquinoline antitumour antibiotic lemonomycin. The intended retrosynthesis of the natural product led to a 2,5-disubstituted pyrrolidine bearing a 1ʹ-amino functional group; a series of routes were explored for the synthesis of this unit. Using (S)-pyroglutamic acid, strategies using Eschenmoser and thiolactim ether coupling reactions were investigated. A sequence based on the formation of a pyrrolidine ring from the cyclisation of an appropriately substituted oxime ether derived from L-phenylalanine was then implemented but a competing Beckmann rearrangement/Grob fragmentation prevented access to the desired heterocycle. Preliminary investigations were also carried out on the modification of cyclic imines derived from oxime ethers which did not undergo Beckmann rearrangement. Chapter 3 describes the synthesis of a library of densely functionalised tetramic acid and pyroglutamate mimics for the right-hand fragment of 16-methyloxazolomycin, and their coupling with a gem-dimethylamide unit mimicking the middle fragment of the natural product. Tetramates were accessed through the Dieckmann cyclisation of N-acyloxazolidines and were derivatised with various alkyl halides. The pyroglutamates were accessed via the highly diastereoselective aldol cyclisation of N-acyloxazolidines formed by the amide coupling of a threonine derived oxazolidine and β-keto-acids. A series of β-keto-acids were synthesised through the acylation and subsequent ring-opening/decarboxylation reaction of Meldrum’s acid. The formation of right-hand/middle fragment adducts was explored using cycloaddition, alkylation and Sonogashira chemistry before a Wittig protocol led to the formation of adducts (E)- and (Z)- 402 and 403. Biological evaluation of the compounds synthesised in this chapter was carried out using both broth and hole-plate bioassays and active compounds were identified. Of particular note was that the Wittig adducts displayed a higher level of activity against Gram-negative E. coli than either the pyroglutamate or amide motifs alone.

Actions


Access Document


Files:

Authors


More by this author
Institution:
University of Oxford
Division:
MPLS
Department:
Chemistry
Sub department:
Organic Chemistry
Research group:
Moloney Group
Oxford college:
St Catherine's College
Role:
Author

Contributors

Division:
MPLS
Department:
Chemistry
Role:
Supervisor


More from this funder
Funder identifier:
https://ror.org/0439y7842
Funding agency for:
Heaviside, EA


Publication date:
2012
Type of award:
DPhil
Level of award:
Doctoral
Awarding institution:
University of Oxford

Terms of use



Views and Downloads






If you are the owner of this record, you can report an update to it here: Report update to this record

TO TOP