Journal article icon

Journal article

Inverse leidenfrost effect: Levitating drops on liquid nitrogen.

Abstract:
We explore the interaction between a liquid drop (initially at room temperature) and a bath of liquid nitrogen. In this scenario, heat transfer occurs through film-boiling: nitrogen vapour layer develops that may cause the drop to levitate at the bath surface. We report the phenomenology of this inverse Leidenfrost effect, investigating the effect of the drop size and density by using an aqueous solution of a tungsten salt to vary the drop density. We find that (depending on its size and density) a drop either levitates or instantaneously sinks into the bulk nitrogen. We begin by measuring the duration of the levitation as a function of the radius R and density pd of the liquid drop. We find that the levitation time increases roughly linearly with drop radius but depends weakly on the drop density. However, for sufficiently large drops, R ≥ Rc(pd), the drop sinks instantaneously; levitation does not occur. This sinking of a (relatively) hot droplet induces film-boiling, releasing a stream of vapour bubbles for a well-defined length of time. We study the duration of this immersed-drop bubbling finding similar scalings (but with different prefactors) to the levitating drop case. With these observations, we study the physical factors limiting the levitation and immersed-film-boiling times, proposing a simple model that explains the scalings observed for the duration of these phenomena, as well as the boundary of (R, pd) parameter space that separates them.
Publication status:
Published
Peer review status:
Peer reviewed

Actions


Access Document


Publisher copy:
10.1021/acs.langmuir.6b00574

Authors



Publisher:
American Chemical Society
Journal:
Langmuir More from this journal
Volume:
32
Issue:
17
Pages:
4179–4188
Publication date:
2016-04-01
Acceptance date:
2016-04-06
DOI:
EISSN:
1520-5827
ISSN:
0743-7463


Language:
English
Pubs id:
pubs:616824
UUID:
uuid:51c91fda-2686-4330-8cdd-0b9a9fa9c15a
Local pid:
pubs:616824
Source identifiers:
616824
Deposit date:
2016-04-29

Terms of use



Views and Downloads






If you are the owner of this record, you can report an update to it here: Report update to this record

TO TOP