Thesis
Topics in Ricci flow with symmetry
- Abstract:
-
In this thesis, we study the Ricci flow and Ricci soliton equations on Riemannian manifolds which admit a certain degree of symmetry. More precisely, we investigate the Ricci soliton equation on connected Riemannian manifolds, which carry a cohomogeneity one action by a compact Lie group of isometries, and the Ricci flow equation for invariant metrics on a certain class of compact and connected homogeneous spaces.
In the first case, we prove that the initial value problem for a cohomogeneity one gradient Ricci soliton around a singular orbit of the group action always has a solution, under a technical assumption. However, this solution is in general not unique. This is a generalisation of the analogous result for the Einstein equation, which was proved by Eschenburg and Wang in their paper "Initial value problem for cohomogeneity one Einstein metrics".
In the second case, by studying the corresponding system of nonlinear ODEs, we identify a class of singular behaviours for the homogeneous Ricci flow on these spaces. The singular behaviours that we find all correspond to type I singularities, which are modelled on rigid shrinking solitons. In the case where the isotropy representation decomposes into two invariant irreducible inequivalent summands, we also investigate the existence of ancient solutions and relate this to the existence and non existence of invariant Einstein metrics. Furthermore, in this special case, we also allow the initial metric to be pseudo- Riemannian and we investigate the existence of immortal solutions.
Finally, we study the behaviour of the scalar curvature for this more general situation and show that in the Riemannian case it always has to turn positive in finite time, if it was negative initially. By contrast, in the pseudo-Riemannian case, there are certain initial conditions which preserve negativity of the scalar curvature.
Actions
- Publication date:
- 2013
- DOI:
- Type of award:
- DPhil
- Level of award:
- Doctoral
- Awarding institution:
- Oxford University, UK
- Language:
-
English
- Keywords:
- Subjects:
- UUID:
-
uuid:36df458b-b7cc-4447-a979-6adb24ff7959
- Local pid:
-
ora:6715
- Deposit date:
-
2013-02-26
Terms of use
- Copyright holder:
- Buzano, M
- Copyright date:
- 2012
If you are the owner of this record, you can report an update to it here: Report update to this record