Thesis
Extrusion processing of chocolate crumb paste
- Abstract:
- 
		
			This project considers the co-rotating twin screw extrusion of a confectionery paste comprising powdered proteins, sugars, water and fats. As is the case with many food industry products, this process has been developed experimentally with little quantitative understanding of how variations in processing conditions influence the formation of the extrudate. A variety of techniques have therefore been developed to characterise and quantify the dispersive mixing, distributive mixing and rheological flow properties of this complex, multiphase, viscoelastic, unstable material. These techniques have then been utilised in a pilot plant extruder study of the mechanics of mixing and paste formation during extrusion, considering the influence of both processing conditions and screw profile. The internal evolution of paste microstructure has been successfully tracked along the length of screw profile using dead-stop extractions of the screws. A rigorous off-line assessment of shear yield strength behaviour using cone penetrometry has shown the use of conventional off-line rheometers to be unviable due to rapid post extrusion hardening. This highlighted the need for an in-line rheological measurement technique for continuous extrusion analysis where the extruded material is severely time dependent and not extractable. In pursuit of this, a novel arrangement of bender elements is proposed and trialled, to rapidly characterise material parameters of viscoelastic pastes. A second technique looking to extend the application of shear wave interface reflection to multiphase pastes is also trialled. A novel analysis of thermogravimetric data (TGA) has generated a viable index of distributive mixing, suitable for use on complex multi-component materials where thermal decomposition temperatures of the components are not well defined. Quantitative image analysis of pastes using scanning electron microscopy (SEM), optical microscopy protein staining and a novel application of multiphoton microscopy (MPM) have been used to visualise paste microstructure and quantify dispersive mixing. From the pilot plant extruder study, the application of these techniques was successful in mapping the evolution of paste mixing and the resulting microstructure, as well as identifying key differences between pastes mixed by twin screw extrusion and batch mixing. 
Actions
Authors
Contributors
- Division:
- MPLS
- Department:
- Engineering Science
- Role:
- Supervisor
- Division:
- MPLS
- Department:
- Engineering Science
- Role:
- Supervisor
- Funder identifier:
- https://ror.org/0439y7842
- Funding agency for:
- Walker, A
- Publication date:
- 2012
- DOI:
- Type of award:
- DPhil
- Level of award:
- Doctoral
- Awarding institution:
- University of Oxford
- Language:
- 
                    English
- Keywords:
- Subjects:
- UUID:
- 
                  uuid:1c54a2e6-a767-4fd3-8bf0-e2d250b7ac4a
- Local pid:
- 
                    ora:12052
- Deposit date:
- 
                    2015-07-31
Terms of use
- Copyright holder:
- Alasdair Walker
- Copyright date:
- 2011
If you are the owner of this record, you can report an update to it here: Report update to this record