Thesis icon

Thesis

Partly exchangeable fragmentations

Abstract:
We introduce a simple tree growth process that gives rise to a new two-parameter family of discrete fragmentation trees that extends Ford's alpha model to multifurcating trees and includes the trees obtained by uniform sampling from Duquesne and Le Gall's stable continuum random tree. We call these new trees the alpha-gamma trees. In this thesis, we obtain their splitting rules, dislocation measures both in ranked order and in sized-biased order, and we study their limiting behaviour. We further extend the underlying exchangeable fragmentation processes of such trees into partly exchangeable fragmentation processes by weakening the exchangeability. We obtain the integral representations for the measures associated with partly exchangeable fragmentation processes and subordinator of the tagged fragments. We also embed the trees associated with such processes into continuum random trees and study their limiting behaviour. In the end, we generate a three-parameter family of partly exchangeable trees which contains the family of the alpha-gamma trees and another important two-parameter family based on Poisson-Dirichlet distributions.

Actions


Access Document


Files:

Authors


More by this author
Institution:
University of Oxford
Division:
MPLS
Department:
Statistics
Oxford college:
Jesus College
Role:
Author

Contributors

Division:
MPLS
Department:
Statistics
Role:
Supervisor


Publication date:
2009
DOI:
Type of award:
DPhil
Level of award:
Doctoral
Awarding institution:
University of Oxford

Terms of use



Views and Downloads






If you are the owner of this record, you can report an update to it here: Report update to this record

TO TOP